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The problem of synchronizing almost conservative dynamic objects [l] under weak con- 
straints is considered. The character and mechanism of action of the objects on the sup- 

.porting system are defined qualitatively and are no way related to its specific form 121, 

The proposed procedure for investigating synchronous states in such systems is based 
on the notion of the dynamic influence matrix. It is shown that qualitative definition 
(specification) of the character of action of the objects is a natural basis for their clas- 
sification. The paper ends with an examination of the synchronization of generators of 
“forces” of the simplest type, i.e. of one- and two-dimensional “forces”. 

The results can be applied, for example, to-the solution of vibration engineering prob- 
lems involving the properties of several complex vibration sources operating simultane- 

ously. 
The problems of synchronous state stability have already been investigated in [3 and 41, 

and therefore will not be considered here. 

1. The dynamic influence matrix. Let us assume that the motion of the 
arbitrary i th object (i = 1.. . , n) in a system is completely defined if we know the 
time variation of li X 1 vector columns of its proper coordinates Qi = (qi(t), . . . . qi(‘i)) 
and mi X 1 vectors of the reverse influence parameters x1 = (xi(t), . . . , xicmiJ). The 
physical character of the reverse influence parameters is completely determined by 
the specifies of the object and is unrelated to the form of the supporting system @I. The 
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additional kinetic and additional potential energy of the object [lf can be naturally writ- 

ten in a form invariant relative to the form of the supporting system. 

ATi = xi*‘A,, (Xi 3 qi) qi’ + ‘12X.iY’A, (Xi 9 qi) Xi’ 

AITi z AlJi’(xi, qi) (1:l) 

Here A,, and A, are, respectively, pi X li and rni X rrzi matrices with not small 

coefficients dependent on xi and qi ; the asterisk denotes matrix transposition. On the 

other hand. the time variation of the reverse influence parameters is determined exclu- 
sively by the variation of the components of m X i vectors y = (ran, , , . , y,J of the 
absolute coordinates of the system.so that 

x’i - Di (y) (1.2) 
We note that the choices of the vectors y and si’(i = 1 ,... . . . . ~21 are in general com- 

pletely unrelated. In practice the vector of reverse influence parameters often has a 
clear geometric significance, while the components of the vector y are sometimes fair- 
ly abstract (e. g. in the case of a supporting system with distributed parameters, when 
nb = 00). 

Since the oscillations of the supporting system are small [I]. so that 

Y =/.Lv (I.31 
where p, is the coupling parameter, we have the expansion 

xi = pui + j.C . - . (I+ = Dl,,$, Dim = dlli ( y) f dy frz0 (1 *a) 

Here Di, is an rnf X m matrix with constant coefficients. 
Relations (1.1) with allowance for (1.3) can be rewritten as 

ATi = p~i*‘Amf (0, qi) qi’+ pa w e *) AIIi my pUi*Ci (qi) $- pz l * * (f-5) 

so that the additional kinetic potential of the i th object to within quantities of a higher 

order of smallness is 
PAT,, = [L {Ui*‘A,i((‘r qi) q*’ - Ui*C, (qi)] (1.6) 

The potential generalized force conveyed to the supporting system by the ith object 
is given with the same degree of accuracy by 

C 
-&$+ALi= - D,iF, 

Here Dmi = Dim* and the nfX 1 vector 

Fizz-- 
( 

$-&-$ ALi= 
) 

- & [4ni to9 qi) q;l i- ci (Cri) (‘1-7) 
i i 

is the force due to the irh object reduced to its proper reverse influence parameters, 

i.e. the vector of fixed actions of the object on the supporting system. Thus, F, is the 
physical “force” generated by the i th object, and the matrix I),, characterizes the 

distribution of actions of this force over the supporting system. If the vector of the reverse 
influence parameters has three orthogonal spatial components, then the vector Pi is a 

force in the ordinary mechanical sense of the word ; but if the reverse influence para- 
meters are rotations, then I;‘, varies periodically with time and is a function of the pro- 

per rapidly rotating phase. F, = Ft ($_ + Cli, V) (1s = vt) 
0 J3) 

where ai is the phase shift of the synchronous motion of the i th object. 
The differential equation of small oscillations of the supporting system in the genera- 

ting approximation is n 

&IV” + Bv’ + CV = 2 D,iF, (Z + Ui, V) (1.0) 
$zzL 
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where hf and c are symmetric positively defined m X m matrices with constant coef- 
ficients. The symme~ic part of the m X m matrix B is also positive. Let us introduce 

the impulsive periodic function (11 (T) representable as a generalized Fourier series, 

The periodic solution of system (1.1) can be represented as a contraction [SJ. 

(1.10) 

where the m X m matrix Iv,,, is the pulse-frequency characteristic of the supporting 
system which satisfies Eq. 

va&l’I”,” + vB’~~,’ -+ C’Ym = E,(I) (t) (1.12) 

Here 15, is a unit m X m matrix, and the prime denotes differentiation with respect 

to r. 
The vector of reverse influence parameters is given (in accordance with (1.4)) by 

Formula 

Here the mi X rnj matrix __ 
Kij = DimY,Dmj 

(1.13) 

(l.lr,) 

is the dynamic matrix of influence of an arbitrary j th object on the 2 th object. 
Now let us assume that the system of forces exerted by the objects is of the form 

l?j = l.2~~~1’ (T)- 6[j (1.15) 

where I is a fixed natural number (1 < 2 6 22). 
Then, by virtue of (1.13). we have 

U{“) = Iii1 (tc Y) (1*1(i) 

Thus, the component Kij(P’ 9) (p = 1,. ,. , m,; q = I,,. , , ITZj) of the matrix I$f 
yields the law of variation of the p th reverse influence parameter of the i th object on 
the periodic impulsive perturbation ‘f)(t) from the q th output of the i th object. 

If small oscillations of the sup~rt~g system are not accompanied by the action of 
gyroscopic forces, so that 1% = IS*, then the matrix pulse-frequency characteristic w, 

of the supporting system is also symmetric. Because of this we have the conditions of 
dynamic reciprocity Iiij = ICji* (1.27) 

Finally, we note that by (1.16) the Fourier coefficients of the expansion of the dvnamic 

are matrix harmonic influence coefficients. If there is no friction in the supporting sys- 
tem, then, of course, K{$ = 0. 

2. The condition8 of sxfrtencs of a synchronous mode of a 
sy 8 t 6 m , It is shown in [P] that the generating config~ation of phase shifts of synchro- 
nous motions of almost conservative objects under supporting constraints can be deter- 
mined from the system 

(2.1) 

Here ICi (v) is the slop of the skeleton curve of the jth object, and fr (v) is the 
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motion of its nonpotential forces in the generating approximadon averaged over the 
period of synchronous motion. The partial vibrational moments w,j can be determined 

from Formulas 
W,j = 2(1>,j II ~ (~ - ~) 

(2.21 

The possibility of introducing the quantities AA,, and ‘I),, is due to the fact that 
small oscillations of the supporting system can be represent&d as sum (1.12), each of 

whose terms ¶n 

vi (% + ui, Y) L-- 
s 

VI, (z - r(, Y) D,,,iPi (9 + ait v) d”I (2.3) 

0 

characterizes the con~bution of the corresponding object, 
The equations for determlng the components of can be written as 

Mv(' + PVC + Cvi = - (2.4) 

where AL,, is the additional kinetic potential of the i th object due to the motion of 

the 1 th object in the generating approximation. 

A&j = vj*‘DrmAmr (0, qr) ql’ -- vj*DimG (qt) (2.5) 

The energy characteristics of interaction of the i th and i th objects averaged over 
the period of synchronous motion, A A,, and CT),, , are given by 

a* 

A&j (ai-aj, V) = & 5 ALi; dr 
0 

2% 

@fj(@-f- aj, V) = & 
.s 

+ vi*‘R,vi’ dr 
0 

It is not difficult to show that basic equations (2.1) remain unaltered in our more 
general case of objects with an arbitrary number of degrees of freedom. 

Let us take the scalar product of matrix equation (2.4) and the vector row rj**and 

add the result to the analogous expression with the subscripts i and f interchanged. 
Let us then average the result over the period of synchronous motion. 

Then, after some transformations we arrive directly at the relations 

(2.7) 

We can show that Formula (2.7) remains valid for i =i, if we assume that the quan- 

tities qi’ and qt in the expression for ALii (2.5) are independent of the phase shifu c+. 

By virtue of this assumption we have 

and the initial equations (2.1) for determining the generating phase shift configuration 
can be rewritten as 

It is natural to call the quantity A:lI in this expression the “addftional action inte- 
gral of the i th object”. 

This is the general formulation of the conditions of existence of a synchronous mode 
which does not include the energy characteristics of motion of the supporting system. 

Let us now turn to the determination of the additional action Integral of the ith object 
which can be obtained by averaging Expression (1.8). By some simple transformations 
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involving integration by parts, allowing for (1.9) and (1.4), we obtain 

Ahi=~,~~~Fi*(t’Zi,V)f;~j(T-q,y)~j(’~~~j,”)drdli 
J=l,I 0 

By virtue of (1.12). relation (2.10) can be rewritten as 
2% 

AAi = & 5 Fi* (T + ai, Y) Iii (~3 Y) do 
0 

(2.1U) 

(2.11) 

Thus, the additional action integral of the i th object is equal to the generalized force 
generated by the object(over its reactive vector displacement over the vector of reverse 
influence parameters) averaged over the period. 

An expression for the partial vibrational moments (2.2) can be obtained by differen- 
tiating Expression (2.10) with respect to the phase shift CL~ in accordance with (2.9). By 
virtue of assumption (2.8) we must assume here that the vectorial force Fi (q ?r- Olir v) 

in the i th term of sum (2.10) is independent of ai. Hence, integrating by parts the deri- 
vative of Expression (2.10) with respect to ai, we obtain 

2x 2s 
(2.12) 

M’ij (a, - aj9 v) = 7& ss Fi* (r + Ui, v) Kij’ (V - ‘1, Y) Fj (q + aj, V) dr dil 
0 n 

We note that in the absence of friction in the supporting system dynamic influence 
matrix (1.17) is an even function of time, Kij(t, V) = Kij( - T, Y), so that 
Kij’ (to Y) = - Kij’ (- T, Y). 

Recalling dynamic reciprocity conditions (1.16), we readily infer from this that the 
matrix of partial vibrational moments is skew-symmetric, 

Wij(Cti - CYzjr Y) $ Wji (0ij - CCir Y) =O (2.13) 

The above relation is at the same time a consequence of the integral criterion of syn- 

chronous motion stability [l]. 

3. Synchronization of generator, of force8 of the timplsrt 
ty pe , The process of constructing a system of equations for determining the generating 
phase shift configuration can be broken down into three steps: 

1) determination of the magnitudes and directions of the forces l”; exerted by the 

objects with a braked supporting system ; 
2) determination of the components of the dynamic influence matrix ; 
3) execution of simple matrix operations and integrations in accordance with Expres- 

sion (2.12). 
This enables us to classify synchronized objects according to the character and magni- 

tude of the forces they generate. The most simple and at the same time one of the most 
common classes of objects of this type is clearly the class of generators of scalar influ- 
ences, or less precisely, generators of forces of constant direction. 

In this case the reverse influence parameter vector has only one component. For this 
reason all of the quantities appearing in relations (2.12) are scalar. 

The harmonic coefficients in Expansion (1.19) are also scalar. Let 

A+“) = k!!) Cos I$?’ 
II II (1 

“ij”? = );iF) sin 9:;) (3.1) 

where kij’F’ and \I, ii(E) are the influence coefficients of a unit harmonic force (in the 
generalized sense) of frequency s in dimensionless time acting at the output of the J’ th 
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rotation of the two vibrators is synchronized in some way, so that the sum inertial force 

fl(x+a, v) = 2 me+ cos (‘F + a) 

has a constant direction when the supporting system is braked. The distance between the 
centers of rotation of the vibrators is small, and the point 0 is attached directly to the 

supporting system. 

Another example of the force generator of the same category is the crankgear mecha- 
nism (Fig.2). We assume that the crank is balanced and has a large moment of inertia, 

that the connecting rod is weightless, that the axis of rotation and the generatirices are 
connected to the supporting system, and that the ratio e / 1 is of the order of smallness 

of the coupling parameter. The force generated by this mechanism has the constant 
direction 0% in the generating approximation ; it is conveyed to the supporting system 
through the point 0 and is given by 

P (‘c + a, v) = meV%os (r + a) 

2. A mechanical harmonic moment generator. The simplest genera- 
tor of the harmonic moment of constant direction is the coupled mechanical vibrator 
described at the beginning of the preceding Section if the rotation of the constituent 
debalances is synchronized and cophased as shown in Fig. 3. The mechanical moment 

generated by the vibrator is perpendicular to the plane of the figure and is given by 

F (z + a, v) = 2mervscos (7 + a) 

Now let us consider the class of two-dimensional force generators one step more com- 
plicated than those described above. Limiting ourselves to purely harmonic perturbations 

Fig. 3 Fig. 4 

by the objects, we choose their proper coordinates in such a way that the force at the 
first output is maximum at the instant when the rotation phase vanishes. Here, of course, 

we have 

I 

F!‘) COS(t + a*) 
Fi (t + ai, v) = * I= ),,. . 1 ,n 

F(a) co.9 (t + a. - yi) 
(3.8) 

t 1 

The dynamic influence matrix of the jth object on the i th, or, more precisely, its 
purely harmonic part, can be written as 

Iiij (t, V) zz + 

I 

k$.l) cos (Z-i *p’) j&2) CQS (7 - qp, 
13 

k;$” ~0s (7 - tft$“) kg.2) c<s (z - ~>fj’2’) 
/ 

(XCI) 

The coefficients klj (P,@ and ~&~(P,q)(p, Q = 1, 2) appearing in matrix (3.2) signify 
(in the mechanical case) the harmonic coefficients of the influence of the force (or 
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moment, depending on the physical nature of the action) on the amplitude and phase of 
the displacement (or rotation). 

Substitute of Expressions (3.8) and (3.9) into basic relation (2.12) yields the follow- 
ing general formula for the partial vibrational moment: (3.10) 

Wij =T$ 1 [Pi” Fp$‘) sin (o”$ - aj + lQ”1) + R~“lF~)k$2) sin (ai - aj + rj + (p~~~*~) + 

+ ~~*)~~~)~~~l) sin (ai - ai - Tt + *$11) f- F(s) ~~z)~~?.~) sin (a 
* I II i -aj-Tr 

f r. + qp’)] 

J 11 

The most common object of this class is a rotating force generator, i. e. an ordinary 
mechanical debalance vibrator (Fig. 4). The rotating vectorial force generated by a 
debalance generator is given by 

F(f+a, v)=me3 
cos(r+aJ 
sin (r + a) I 

(3.111 

Specialization of Expression (3.10) in accordance with this formula yields the expres- 
sion for the partial vibrational moment of the problem of synchronizing mechanical vibra- 
tors mounted on a linear (more precisely, a linearizable) supporting system (‘I]. 

Some practical problems in vibration proofing involve the synchronization of genera- 
tors of a helical “force” (dynamic screw). We are referring to a two-output dynamic 
object which generates a mechanical force and moment having the same constant direc- 
tion with a braked supporting system. 

Fig. 5 

It is clear that one of the compouents of the vector of reverse influence parameters 
of a dynamic screw generator is linear displacement along some axis, while the other 
component is rotation about the same axis. A dynamic screw generator can take the 
form of a coupled vibrator whose component flux rotations are synchronized and cophased 
as shown in Fig. 5. The object generates the helical “force” 

F (z.+ a + v) = Zmeva cos (r + a) (3.12) 

which is conveyed to the supporting system through the point 0 . For fl = 112 n this 
object degenerates into a harmonic force generator; for 8 = 0 it degenerates into a 
moment generator. 

We note in conclusion that the order of conversion of the components of the reverse 
influence parameter vector, and sometimes (e.g. in the case of a rotating force genera- 
tor) the very choice of these components in problems involving synchronization of multi- 
dimensional force generators, are somewhat arbitrary and are generally dictated by purely 
physical considerations. 
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We present the model of random, pseudoturbulent phase motions in concentrated, disperse, 
gas-suspended particles systems, based on the development of ideas expounded in our pre- 
vious papers [l- 31 and [4]. This model enables us, in principle, to construct a structural 
theory of gaseous suspensions when the flow is pseudoturbulent [S], to compute the cor- 
responding transfer coefficients and to formulate the dynamic equations of motion. 

Papers [l - 33 considered pulsating motions of a two-phase disperse system using the 
statistical approach and developed a general method of the quantitative treatment of 
the pulsations and their influence on the average motion of the system. At the same 

time, ways were indicated towards constructing a non-Newtonian mechanics of disperse 

systems. 
The model [3] however, retains a number of unsolved difficulties. First of them con- 

cerns the fact that the proposed model is based on the use of certain random forces act- 
ing on the phases in random motion, and of the statistical white noise, the latter allow- 
ing the description of not only of the orderly degeneration of the fluctuations of the 
averaged hydrodynamic field of a disperse system, but also of their random accumula- 
tion. The forces and the white noise enter 133 separately, although the general physical 
considerations imply that a mere appearance of the white noise should be the result of 
the action of the random forces. 


